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Abstract-Sapphire fibers for use in both optical sensors and structure composites have been manufactured 
using the edge-defined film-fed growth (EFG) process. A thermocapillary model based on a combined 
Lagrangian/Eulerian method has been developed to simulate the dynamic characteristics of the EFG 
process, subject to the pull speed perturbations. The meniscus behavior is governed by the Young-Laplace 
equation subject to a specified contact condition at the trijunction point. Two models have been investigated 
at the trijunction point, including a conventionally adopted static model which fixes the contact angle, and 
a dynamic model which regulates the contact angle according to the speed and direction of the instantaneous 
movement of the trijunction point. It has been predicted, and observed experimentally, that the fiber 
diameter responds to the pull speed perturbation at the corresponding frequency, but the sensitivity of the 
response decays as the frequency increases. While both the static and dynamic models at trijunction points 
cause the crystal to vary in size in response to the external fluctuations, their effects are noticeably different, 
indicating that the conventional models are not adequate to yield accurate predictions in the solidification 

characteristics dynamically. 

1. INTRODUCTION 

SAPPHIRE fiber for use in both optical sensors and 
structure composites has been developed using the 
edge-defined film-fed growth (EFG) process [I-S], 
wherein a crystallographically oriented sapphire fiber 
is grown from a meniscus of molten alumina. The 
EFG process can yield continuous lengths of sapphire 
fiber with diameters in the range of 0.05 to 0.25 mm. 
The fiber grower, schematically shown in Fig. 1, con- 
tains three separate main components : the hot zone, 

the puller system, and the fiber spooling system. The 
hot zone consists of an inductively heated refractory 
metal crucible, with the edge-defining dies all enclosed 
within a water-cooled, environmentally-regulated 
chamber. The melt is supplied to each die tip from a 
capillary fed manifold. The puller system consists of 
a belt puller and a fiber guide. The belt puller utilizes 
a double belt traction mechanism driven by a precision 
stepper motor and is monitored with an optical en- 
coder. After the fiber exits the puller, it passes through 
several pulleys and is wound on spools under regu- 
lated tension. Within the hot zone, the fiber growth 
process begins with seeding at the die tip, which estab- 
lishes a crystallographic orientation. The puller speed 
is generally kept constant and the meniscus dimen- 
sions and fiber diameter are manipulated through 
changes in the induction coil power level setting to 
adjust die tip temperature. 

In practice, both the die tip temperature and the 
puller speed may experience either intentional or un- 

intentional variations in time. The unintentional 

variations can result from the perturbations to the 
operating conditions caused by environmental fluc- 
tuations, coil power fluctuations, or motor speed 

irregularities. The intentional variations can be 
designed to compensate the aforementioned pertur- 
bations to achieve a controlled growth process and 
uniform crystal properties and dimensions. 

In the present work, numerical simulations are con- 

ducted to analyze the crystal growth characteristics 

subject to the perturbations in pull speed under con- 
ditions typical to the EFG process. Previously, work 
has been conducted for this problem [6], where the 
Stefan number, 

CAT 
St = LL 

Ah 

where C,, is the specific heat of melt at constant pres- 

sure, AT is the characteristic temperature, taken as the 
difference between temperatures at melting point and 
die tip, and Ahr is the latent heat of fusion. The value 
of St is taken as 1, indicating a substantial temperature 
variation, of the order of several hundred K, from the 
die tip to the crystal/melt interface. Here, we choose 
a Stefan number of 0.024, which is more rep- 
resentative of the current state-of-the-art in actual 
production. Together with ref. [6], the dynamic 
characteristics of the EFG process under different 
conditions can be assessed and compared. Further- 
more, so far in the literature, the static contact con- 
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NOMENCLATURE 

amplitude of external forcing 

Bond number 
Biot number 
specific heat at constant pressure 
[J g- ’ K- ‘1 

meniscus shape distribution as function 

of I and t [cm] 
gravitational acceleration [cm s ‘1 

heat flux along the top of the solid phase 
[Wcm ‘] 

(1) height of the melt/solid interface 

h(r. t) [cm] 
(2) convective heat transfer coefficient 
[Wcm *K,’ 1 
height of the trijunction point [cm] 
non-dimensional h, 

latent heat of fusion [J g ‘1 

thermal conductivity [W cm-- ’ K ‘1 
dimensional vertical length of the 
physical domain [cm] 
non-dimensional I 
pressure [dyne cm ‘1 
radius [cm] 
radius of die [cm] 
radius of the trijunction point [cm] 
non-dimensional radius 
Stefan number 
time [s] 
temperature [K] 
ambient temperature [K] 
base temperature [K] 
melting temperature [K] 

% dimensional pull speed [cm s ‘1 
u P non-dimensional pull speed 

axial coordinate [cm] 
Z non-dimensional vertical coordinate. 

Greek symbols 

thermal diffusivity [cm’ s ‘1 

thermal expansion coefficient [K ‘1 
surface tension [dyne cm ‘1 
non-dimensional thermal diffusivity 
emissivity 

non-dimensional temperature 
dynamic viscosity [g s ’ cm ‘1 
kinematic viscosity [cm’ s ‘1 

density [g cm ‘1 
SteTan-Boltzmann constant 
[5.670x 10 ‘* W cm ~’ Km“] 

characteristic time scale [s] 
advancing contact angle [rad] 
instantaneous contact angle of the 

meniscus at the trijunction point [rad] 

receding contact angle [rad] 
equilibrium contact angle [rad] 

period of external forcing. 

Subscripts 

a ambient quantity 

; 
gas phase 
liquid phase 

I- radius component 
S solid phase 
2 vertical component. 

eniscus 

Die Tip 

View Port 

FIG. 1. Schematic illustration of the EFG sapphire fiber growth equipment used to produce 25 fibers with 
diameters in the range 0.025-O. 15 mm. The insert shows a magnified view of the die tip and meniscus 

region where fiber solidification occurs. 
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dition is normally adopted [6-81. In this work, the 
contact condition at the solid/melt/gas trijunction 
point is qualitatively extended, and two different types 
of constraints are compared. They are : (1) the con- 
ventional static model which requires that the Young’s 
equilibrium contact condition, namely, a fixed contact 
angle between the surfaces separating melt/gas and 
solid/melt be maintained, and (2) a dynamic model 
which, instead of fixing the contact angle, allows it to 
vary according to the magnitude and direction of the 
instantaneous movement of the trijunction point. 

The primary focus of the present work is to inves- 
tigate the effect of perturbation in pull speed, subject 
to two different models for contact condition at the 
trijunction point, on the variation of the fiber dimen- 
sions. Discussions will also be given regarding the 
implication of the scaling procedure on computational 
efficiency. As will be demonstrated, an appropriate 
scaling procedure should account for the effect of 
Stefan number of the system, for it regulates the speed 
of the solid/melt interface movement. Although the 
focus is on the EFG process, the methodology under 
development here is generic. It can be applied to study 
other processing techniques such as Czochralski or 
floating zone methods. 

2. PROBLEM FORMULATION AND 

NUMERICAL PROCEDURE 

A schematic of the present EFG model along with 
the associated boundary conditions is given in Fig. 2. 

(4 

(b) JT, e, CP, UP Ts - k,- = G, JZ 

- T’) 

T, = Tb 

FIG. 2. Schematic of configuration (a) and boundary con- 
ditions (b) of the present EFG model. 

The physical dimensions and the material properties 
of sapphire adopted are given in ref. [6]. Table 1 
summarizes the important parameters and their 
numerical values employed in the present model based 
on these values. Marangoni number can be viewed as 
the ratio between the time scales associated with heat 
conduction and shear stress. For a low Prandtl num- 
ber fluid, where the kinematic viscosity is small com- 

Table 1 (a). Thermophysical properties and physical dimen- 
sions of sapphire (Al,O,) and processing parameters used in 

the present EFG simulation 

The material property 
of sapphire (Al,O,) Adopted value 

k, (W cm-’ K-‘) 

PI (g cm31 
C,, (J go ’ Km ‘) 

&I 

k, (W cm-’ K-‘) 

P. (is cm-7 
CPs (J g-’ Km’) 

4 

T, (K) 
Ahr (J g- ‘1 
90 @edt 
h(Wcm-*K-l) 

rb (cm) 
AT(K) 
up (cm s- ‘) 

B (Km’) 
y (dyne cm- ‘) 
o (W cm-’ K-4) 
p (gem-’ ss’) 
v (cm’ s- ‘) 

0.1 0.1 
3.05 3.05 
1.26 1.26 
0.9 0.9 

0.1 
4.00 
1.26 

0.1 
3.05 
1.26 
0.9 

2316 
1046 

2316 
1046 
135 

1.1 x 10-x 

0.02 
20 

0.062 
3x lo-* 

0.69 
5.67 x IO- I2 

0.59 
0.19 

t C#J~ is defined as the angle between solid/melt interface 
and melt/gas interface. 

Table l(b). Definition and magnitude of key dimensionless 
parameters based on values given in Table I(a) 

Fo = z; Fourier number 
rll 

St = CPA = __ = 0.024 ; Stefan number 
c 

B. = A& 
__ = 2.8 x lOe4; Bond number 

Ylg 

Ra = BsATr: 

VP 
= 4.2 x 1 O- ’ ; Rayleigh number 

I I g ATr, 

MQZ-------_= 
pu 

1.56 ; Marangoni number 

Pe = s = 0.05 ; Peclet number 
a1 

hr, 
Ei = - = 2.2 x 10m3 ; Biot number 

k 

earbAT’ 
R&---z 

k 
1.8 x 10M9 ; Radiation number 



pared to the thermal diffusivity, a Marangoni number (c) along the side surface of the melt, heat is trans- 
of order one imphcs that the velocity Scdk other than ferred to the surroundings by the combined conduc- 
the constant fiber pull speed, is very small and hence tion, convection and radiation 
the convection elect resulting from nonuniform sur- 
face tension is negligible. The small order of mag- 
nitude of the Rayleigh number indicates that the 

-k,;;; = h,(T,-T,)+ti(i(7‘P-T.~), 

buoyancy-induced convection is also negligible. On r = f’(z), 0 < z < he (6) 
the other hand, with a small value of Peclet number, 
based on the pull speed E+ the convection effect can where n is nornyal unit vector on the meniscus surface. 

be largely neglected. In the present model. the momen- h, the heat transfer coefficient, E the emissivity, (T the 

tum equations are not considered explicitly, but the Stefan-Boltzmann constant, T, the ambient tem- 

convective heat transfer caused by the tibcr pull speed perature, and h, the height of trijunction point. 

is accounted for in the energy equation. Some of the Similarly, the energy equation in the solid phase is 

basic concepts related to the above issues can be found 
in Shyy 191. Cap~Ilarity d~~minates static pressure in 
terms of controlling the shape of the meniscus. 
Furthermore. under the condition that hydrostatic O<rQr,,h<z<l (7) 
pressure is not present, the meniscus profile is close to 
a straight line [6]. Regarding the governing equations where the subscript s denotes the solidus phase con- 

and boundary conditions relevant to the present dition, r, is the radius of the trijunction point, and I 

system, the following presents the Young-Laplace is the height of the domain modelled. As to the bound- 

equation (controlling the shape of the melt/gas inter- ary conditions, 

face), energy transport equation, mass continuity (a) along the side surface of the solid, heat is trans- 
equation, and movement of the solid/melt interface in ferred to the surroundings by the combined conduc- 
the Y-Z axisymmetric coordinate system. tion, convection and radiation 

The Young-Laplace equation governing the equi- 
librium meniscus shape in the axisyInmetric geometry 
is 

-kl$ = ~z,(T,-T,)+EcT(T~-T~), 

r = r(z), h(r,) < 2 & I (8) 

(b) along the top boundary of the solid, the heat 

where yIs is the surface tension between the melt and 
flux is specified 

the air,f’describes the meniscus shape. and Ap is the 
difference in applied pressure between the liquid phase 
and the gas phase. The bottom edge of the meniscus 
is defined by the die radius, r,,, and the top edge is where G, is the prescribed heat flux out of the top 

defined by the crystal radius, r,. boundary from the crystal, and 

The energy equation in the liquid phase in dimen- (c) along the centerline a symmetric condition is 

sional form is applied 

r’T, 
m:y = 0, r = 0, h(0) ,< z < 1. (10) 

0 < r s f’(z), 0 d z < h(r) (3) 
Because of the low Peclet number, convection does 

not affect heat transfer in a significant way. The vel- 

where the subscript 1 denotes the liquidus phase con- ocity in the melt is determined using the one-dimen- 

dition, v1 is the convection speed along the axial direc- sional continuity equation : 

tion and .f and h define the meniscus shape in the r 
and z direction, respectively. The boundary conditions 

(7cri)UP = (nr’fv, (11) 

are given as follows : where v; is the advection speed in the melt, which is 

(a) central line 
determined by the local radius. 

Finally, at the melt/solid interface z = h(r, t), both 

dT, equ~lib~um solidification and conservation of energy 
~ = 0, 
i, 

r = 0,o < z < h(O) (4) are satisfied. 

(b) the melt inlet 
r, = T, = T,,, (12) 

* _I 

r, = T,,, O<r<rr,,z=O (5) k,g -ksz = p,Ah, (13) 

where Tb is the base temperature at the melt inlet, and 
r, is the radius of the contact Line between the meniscus Since the equations possess the various dimen- 
and die, and sionless parameters far from order 1, an appropriate 
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scaling has been found to be critical in obtaining the 
solutions in an efficient manner. This aspect will be 
addressed later. 

The computational strategy designed here utilizes 
an explicit front tracking technique, based on a com- 
bined Lagrangian and Eulerian approach, to locate 
and advance the moving boundaries between the crys- 
tal and the melt, as well as the new meniscus shape. 
The procedure has been discussed in detail in ref. [IO]. 
In this procedure, the markers along the interface are 
used to define and advance the location of the inter- 
face in time ; the movement is tracked via a Lagrang- 
ian framework. The velocity of each marker is deter- 
mined by the balance between the difference of 
thermal gradients in the solid and in the melt, and the 
latent heat absorption as given in equation (13). Based 
on the newly defined boundary shapes, a grid will 
be generated again and the rate of grid movement 
evaluated accordingly. The energy equation in each 
phase will be computed in an Eulerian framework. All 
these procedures are performed in a fully coupled 
manner involving interactions among the temperature 
field, meniscus and interface motion, and grid move- 
ment at each iteration. Within each time step, the 
iterations continue until all the governing equations, 
boundary conditions, and interface constraints are 
satisfied within a specified convergence criterion ; 
here, it is required that the summation over the 
domain of the absolute imbalance of the non- 
dimensional fluxes in each computational cell be 
smaller 5 x lo- 5. 

The various issues of the specification of an appro- 
priate contact condition at the trijunction point have 
been discussed by Shyy et al. [I 11. Conventionally, a 
constant contact angle, in the spirit of the Young’s 
equilibrium contact condition, has been used [lo], 
namely, 

(14) 

where rc is the radius of the trijunction point, h, is the 

--E +& dR 
0 c 

dr 
0 A advancing contact angle 

#c instantaneous contact angle 

$R receding contact angle 

FIG. 3. Model of dynamic contact condition at the trijunction 
point. 

height of the trijunction point, 4(t) is the instan- 
taneous contact angle of the meniscus at the tri- 
junction point measured with respect to a reference 
direction, (b,, is the equilibrium contact angle which is 
a material property. 

A dynamic condition has also been developed and 
incorporated into the computational model. This 
model is depicted in Fig. 3, which indicates that 
depending on the direction and speed of movement of 
the trijunction point, the contact angle will assume 
different values. Specifically, as the rate of change of 
the radius of a trijunction point exceeds a threshold, 
namely, dr,/dt > E, where E is a specified value, a con- 
stant advancing contact angle is assigned ; based on 
this contact angle, equation (14) is invoked to deter- 
mine rC. Similarly, if dr,/dt < -E, a different constant 
receding contact angle is assigned to determine rc. For 
drJdt lying between -E and E, the contact angle varies 
with dr,/dt, which will determine the instantaneous 
shape and location of the melt/crystal interface. In 
this dynamic model, which specified advancing and 
receding contact angles [7, 111, a qualitative inves- 
tigation of the effect of contact angle on the sol- 
idification characteristics can be made. 

Both the static and dynamic contact conditions 
have been considered in the simulations and their 
relative impact on the solidification process is 
assessed. It appears that the conventionally utilized 
static model [6, 81 at the trijunction point is not 
sufficient to describe the dynamics of fiber growth. In 
the following, results obtained from the simulations 
of the crystal growth process with respect to the pull 
speed perturbation and different contact conditions 
are discussed. 

3. RESULTS AND DISCUSSION 

3.1. Scaling procedure 
First we discuss two scaling procedures utilized to 

nondimensionalize and, more critically, normalize the 
various terms present in the governing equations and 
their implications on the computational efficiency. As 
it turns out, due care should be taken in choosing 
the appropriate reference quantities because for many 
phase change problems this choice has a major impact 
on the amount of computing cost in conducting a 
simulation. It is noted that in the present problem, the 
two energy transport equations are applied in the 
regions separated by a moving interface, causing a 
nonlinear coupling between the two equations. Hence, 
in the course of solving these energy equations with 
the backward Euler time stepping scheme, while a von 
Neumann type of stability analysis indicates that the 
computation is unconditionally stable for each of the 
energy equations, the nonlinear coupling caused by 
the interface movement makes it only conditionally 
stable. Numerical experiments indicate that, as 
expected, the range of the time step size acceptable for 
a stable computation depends on the distribution of 
the grid points in each phase. 



Table 2. Two different scaling procedures and resulting nondimensional energy equations 
(a) Chorcc 1 
~_____.._ ._l” .__-~-_.______I_ _- -_..-“-.-._.l______._,_ _“_ .__..^_______.. I_. ._._ _. .___ .~_ 

length scale: i, = rh. velocity scale: 1‘, = ai fir. time scale: I, = /,jr-,, and temperature scale: AT := din‘erence between tem- 
pcrature at melting point and at die tip 

energy equation for solid : 

intcrfacclilovem~nt equation : 2&??L !!i &..!g 
i 1 ’ Y 

(b) Choice 2 

length scale : f, = rh, velocity scale : I’, = St ~,!l~, time scale : t, = 1,/t:,, and temperature scale : AT 

energy equation for solid: 

interface movement equation : 

Due to the symmetry of the problem, only half 
of the physical domain is modelIed. For the entire 
physical domain encompassing both the crystal and 
the melt, effectively a 41 x41 nonuniform grid is 
employed. More details can be found in ref. [6]. 

Tabie 2 presents two different scaling procedures 
and the resulting nondimensional equations of energy 
transport and interface movement. As can be seen. 
the only difference between the two procedures is the 
ve1ocit.y scale ; in choice 1, a standard characteristic 
diffusional velocity is used, while in choice 2, the 
Stefan number is included in addition to the diffu- 
sional velocity scale. The main motivatjon of the 
second choice stems from the observation that as can 
be easily deduced from equation (13), with choice 1, 
the nondimensional speed of interface movement is 
scaled with St. Accordingly, in nondimensional terms, 
for the low St cases, the interface moves at a cor- 
respondingly slow rate. As already mentioned, even 
with the use of an implicit procedure, the computation 
is not unconditionally stable. Numerical experiments 
have indicated that, in terms of the nondimensional 
values, the time step sizes of the set of governing 
equations resulting from both choice 1 and 2 have very 
comparable stability restrictions. Hence, considering 
the fact that the time scale of choice 2 is larger than 
that of choice 1 by a factor of l/St, the relative com- 
puting efficiency of the two scaling procedures 
depends highly on the value of the Stefan number. As 
an illustration, computations have been conducted 
using both scaiing procedures and starting with the 
identical initial conditions for the low St case studied 
here. In both computations, the nondimensional time 

step is AT = 10. ‘, which is about IO times the non- 
dimensional diffusiona~ time scale based on the small- 
est grid spacing, namely (Ax)&&, where (AX),,, is 
the smallest grid spacing and LX is the thermal diffu- 
sivity. For both scaling procedures, numerical exper- 
iments indicate that this value of Ar is very close to 
the stabj~ity limit of the implicit Euler time stepping 
scheme adopted in the present work. 

Figure 4 compares the paths of the computing his- 
tories with both scaling procedures from an identical 
initial condition toward the steady-state solution sub- 
ject to the same boundary conditions given in Section 
2. The Stefan number chosen in the present work 
is 0.024. SubstantiaIly different convergent behaviors 
have been observed between the two scaling 
procedures. As already mentioned, the differences of 
the convergence characteristic is largely caused by the 
different orders of magnitude of the nondimensional 
interface velocity yielded by the two scaling pro- 

cedures. With choice 1, the interface speed is of the 
order of St, while with choice 2, it is of the order 
of I. Consequently, choice 2 needs a far fewer number 
of nondimensional time steps to reach the steady-state 
solution. With choice I, however, the system appears 
to go through a long transient period before it can 
reach the steady state. As a check, the converged 
steady-state solution obtained from choice 2 is 
substituted into the computation based on choice I, 
and this solution is immediately accepted as the con- 
verged solution, confirming that with both scaling 
procedures, the computations eventually lead to the 
same steady-state solution. Although the two scaling 
procedures result in the same solution, as they should. 
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time steps 

time steps 10’ 

FIG. 4. Comparison of the convergence path of H, and R, to reach steady-state using different scaling 
procedures, choice 1: VN = O(B) and choice 2 : VN = U( 1). 

the computing cost of them differs by an order of 
(l/St). For all the results to be presented, the non- 
dimensional equations based on choice 2 are used. 
The steady-state isotherm distribution subjected to 
the conditions given in Table 1 is shown in Fig. 5; 
due to the small value of Stefan number, the thermal 
gradients in the melt and the crystal regions are of 
different magnitudes, as evidenced by the interface 
constraint listed in Table 2. Furthermore, it is inter- 
esting to note that with St = 0.024 the solid/melt inter- 
face is convex toward the melt, while previously in ref. 

FIG. 5. Isotherms of the steady-state solution corresponding 
to the operating parameters given in Table 1. 

[6], it is found that with St = 1 the interface is convex 
toward the solid region. 

3.2. Simulation with constant contact angle 

In the course of dynamically simulating the growth 
characteristics subject to the pull speed perturbations, 
different frequencies have been investigated. For the 
results to be presented here, all the boundary con- 
ditions remain unchanged except that the pull speed 
is now composed of the steady-state value plus a fluc- 
tuating component which is a sinusoidal function with 
a fixed frequency, namely, 

UP(t) = WJ,,,,,[l+.4 sin (2777/W, 

where (UJrlady is the steady state pull speed, A is the 
percentage of fluctuation and Q is the period. The 
simulation starts with the steady-state solution as the 
initial condition. Figure 6 shows the time series plots 
of two cases, one with a fluctuating pull speed of the 
period of 5OOA7, AT = lo-‘, and another with 20Ar. 
Shown there are the time histories of the pull speed, 
UP, the height and the radius of the trijunction point, 
H, and R,, respectively. Consistent with the case of 
St = 1 studied previously [6], the crystal diameter 
responds to the externally imposed perturbation at 
the corresponding frequency, but the sensitivity of the 
response depends on the frequency of perturbation. 
For a slower perturbation of the period of 50067, 
both H, and R, exhibit higher levels of oscillation 
than for a faster perturbation of 2067 ; the differences 



(a) period = 500 AT (b) period = 20 AT 

time steps 

time steps 

II ,,,I 
Y IO m lo a a0 (D 

time steps 

time steps 

FIG. 6. Time histories of H, and R, subject to a single harmonic perturbation of UP with (a) period = 5OOAz 
and (b) period = 206~. 

between them are substantial. Furthermore, also con- 
sistent with the case of St = 1, the nonlinearity of 
the underlying physics has caused the time averaged 
values of H, and R, to be different from the steady- 

state values. 
Figure 7 gives an overall depiction of the percentage 

variations of H, and R, with respect to different per- 
turbation periods predicted by the present model. For 
both H, and R, the tendency of exhibiting reduced 
sensitivities to the external perturbations as the fre- 
quency increases can be clearly observed. The reason 
for this phenomenon obviously lies in the relative 
competition of the time scale of the grower and the 
time scale of the perturbation. Since A7 is 10m3, for 
the pull speed fluctuation of the period of several 
hundred AT, the system’s dominant nondimensional 

time scale, which is of order 1 according to choice 2 
given in Table 2, and the perturbation time scale are 
comparable. Hence, the system is able to respond and 
follow the perturbation closely, resulting in a clear 
connection between the dynamic behaviors of UP and 
H, and R,. For high frequency perturbations, of the 
period of hundred A7 or less, the system’s time scale 
is too long, causing decreases in sensitivity of H, and 
R, as observed in Fig. 7. This phenomenon has also 
been observed in the actual growth system. Figure 8 
shows a Bode diagram based on a series of exper- 
iments to depict the frequency response between the 
fiber diameter and pull speed. It indicates that with 
relatively slow varying perturbations over a range of 
frequencies in pull speed, the fiber diameter responds 
with a certain sensitivity: as the perturbation fre- 
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period (time steps) 

FIG. 7. Characteristics of interface movement with respect to different forcing frequencies of U,. 

quency increases beyond a threshold, the system can 
no longer respond to it with equal sensitivities. Hence, 
the predicted trend of the system response is quali- 
tatively verified experimentally [12]. 

3.3. Simulation with dynamic contact angle 
Next, we present the results obtained based on a 

dynamic model for the contact condition at the tri- 
junction point. The model, as schematically depicted 
in Fig. 3, now allows different values of contact angle 
according to the instantaneous direction as well as the 
speed of movement of the trijunction point. Drawing 
the analogy to the advancing and receding contact 
angle of a liquid drop on a flat surface [7], two different 
contact angles are assigned as the asymptotic values 
for the outward and inward moving cases, respec- 
tively. Furthermore, if the contact point moves at a 
slow enough speed, in the range of +a and --E as 
shown in Fig. 3, then the contact angle is allowed to 

vary between the two asymptotic angles. For the case 
implemented, we take the asymptotic value of the 
contact angle associated with the outward moving 
case to be the same as that adopted in the static model, 
namely, 135”. The asymptotic contact angle of the 
inward moving case is taken as 134, and E is taken as 
0.1. In other words, the variation of contact angle 
between the inward and outward moving cases is 1”. 
While this variation seems very small, it has a quite 
noticeable impact on the characteristics of the sol- 
idification process. 

Figure 9 shows the comparison of the time histories 
of both H, and R, between the cases with static and 
dynamic contact conditions, where a perturbation of 
UP with a period of lOOAr is enforced. It is striking to 
observe that with a seemingly small modification of 
the contact condition, the resulting values of H, and R, 
are substantially affected. For R,, both time-averaged 
and fluctuating values are quite different with the two 
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FIG. 8. A typical experimental curve fit of the diameter variation with respect to different forcing frequencies 
of u,. 
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FIG. 9. Time histories of H, and R, subject to a single 
harmonic perturbation of r/, with period = lOOAr. 

contact conditions; the dynamic contact model yields 
a crystal of a somewhat larger mean diameter and 
smaller variations. For H,., on the other hand, the 
time-averaged fiber diameter is smaller with the use 
of the dynamic contact condition; the fluctuating 
magnitudes in both cases, however, appear quite com- 
parable. Hence, there seem to be differences in 
behavior between H, and R, resulting from the static 

and dynamic models. In this regard, several points 
can be noted to elucidate the results observed here. As 
observed in Fig. 5, the solid/melt interface is concave 
toward the solid phase, indicating that as the contact 

angle is reduced, the trijunction point tends to move 
outward, yielding a larger diameter as shown in Fig. 
9. This will also seem to cause a corresponding 
increase in H, as seen in the initial transient behavior 
in the time series plot of H,. However, a larger crystal 
diameter also causes a larger volume and a higher heat 
loss both via conduction and advection. Accordingly, 
there is also a change in the balance of the thermal 
constraint at interface, which eventually reduces the 
value of H, as observed in the later stage of Fig. 9. 

It should be noted that if the solid/melt interface 
was of the opposite curvature, then the trend of R, 
will change as well. Hence, the interaction of thermal 
and contact condition plays a pivotal role in deter- 
mining the solidification characteristics. Furthermore, 
since the contact angle is no longer fixed in the 

time steps 

FIG. 10. Time histories of dH,/dt and dR,/ds subject to a 
single harmonic perturbation of UP with period = IOOAT. 

dynamic model, an extra degree of nonlinearity 
also appears via the enforcement of the contact con- 
dition. Plots of the rate of change of H, and R, are 

given in Fig. 10 to demonstrate this point. Clearly, 
with the static contact condition, a single harmonic 
reflecting that of the imposed perturbation of U, is 
reproduced in both H, and R,. On the other hand, 
with the dynamic contact condition, the movement 

of trijunction point is no longer consistent with 
the imposed frequency, instead, it exhibits a quasi- 
periodic pattern with many additional frequencies 
present. These additional frequencies appear because 

contact angles, and hence H, and R,, vary in response 
to the pull speed perturbations. 

4. SUMMARY AND CONCLUDING REMARKS 

In the present work, a thermocapillary dynamic 
model has been developed to simulate the EFG 
process. In developing the present predictive tool, sev- 
eral issues have been identified and addressed, as will 
be summarized in the following. 

It has been established that for the thin fiber growth 
process. the various control parameters such as the 
Stefan number, Rayleigh number, Peclet num- 
ber, and Bond number are far from being order 1. 
Consequently, care should be exercised in scaling 
the governing equations to facilitate efficient com- 
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putations. It is argued that the characteristic velocity 

scale should be defined to ensure that the solid/melt 
interface advances at a nondimensional speed of 

order 1. Since the interface movement is primarily 
responsible for the nonlinearity of the phase change 
problem, a conventional choice based on the diffusion 
scale, choice 1, will yield a set of equations that 
requires the computing cost to increase by a factor of 
l/St. Similar situations also arise in computations of 
the solidification characteristics at the morphological 

scale [9]. 
Regarding the crystal size variations in response to 

the pull speed perturbation, a direct linkage between 
the forcing frequency and the response frequency is 
observed for both the present case and that of St = 1, 
studied previously [6]. Furthermore, it has also been 
predicted that as the forcing frequency increases, the 
solid/melt interface responds at a reduced sensitivity. 

This trend has been observed experimentally. 
Two different models have been utilized for the 

contact condition at trijunction point, including a con- 
ventionally adopted static contact angle [11], and a 
dynamic model which allows the contact angle to 
vary according to the direction and the rate of the 
trijunction point movement. It turns out that the two 
models can yield substantial differences in the crystal 
diameter, including the time-averaged as well as the 
fluctuating magnitudes. Furthermore, additional har- 
monics can also be yielded by the dynamic contact 
condition due to the extra nonlinearity contained by 
it. These observations have clearly indicated that the 
static contact condition is not sufficient to yield all the 
information regarding the dynamic behavior of the 
crystal correctly. 

AcknowledgementsThe present work is partially supported 
by the NFS Grant DDM-9213568, and by GE Aircraft 
Engines. Discussions held with Drs D. G. Backman and Y. 

Pang have been critical for the successful completion of the 
present work. 

I. 

2. 

3. 

4. 

5. 

6. 

I. 

8. 

9. 

10. 

11. 

12. 

REFERENCES 

J. P. Kalejs, H. M. Ettouney and R. A. Brown, Com- 
parison of growth characteristics of sapphire and silicon 
ribbon produced by EFG, J. Cr,ystal Growth 65, 316 
332 (1983). 
J. P. Kalejs, L.-Y. Chin and F. M. Carlson, Interface 
shape studies for silicon ribbon growth by the EFG 
technique, J. CrJ>stal Growth 61,473484 (1983). 
G. I. Babbin, E. A. Brener and V. A. Tatarchenko, 
Crystallization stability during capillary shaping. J. 
Crystnl Growth 50, 45550 (1980). 
J. C. Swartz, T. Surek and B. Chalmers, The EFG pro- 
cess applied to the growth of silicon ribbons, J. Electronic 
Mate& 4,2555279 (1975). 
E. M. Sachs. Thermal sensitivitv and stabilitv of EFG 
silicon ribbon growth, J. Crystal Growth 50: 1022113 
(1980). 
S.-J. Liang and W. Shyy, Dynamic simulation of thin 
fiber growth, J. Materials Processing Manujticturing Sci. 
2, 189-215 (1993). 
E. B. Dussan, On the spreading of liquid on solid sur- 
face : static and dynamic contact lines, Ann. Rev. Fluid 
Mech. II,371400 (1979). 
H. M. Ettouney and R. A. Brown, Finite-element 
methods for steady solidification problems, /. Cornput. 
Phys. 49, 118-150 (1983). 
W. Shyy, H. S. Udaykumar and S.-J. Liang, An interface 
tracking method applied to morphological evolution 
during phase change, Int. J. Heat Muss Transfer 36, 
1833-1844 (1993). 
W. Shyy, H. S. Udaykumar and S.-J. Liang, A study 
of meniscus formation with application to edge-defined 
fiber growth process, Physics of Fluids A 5, 2610-2623 
(1993). 
E. S. Russell, L. C. Filler and D. G. Backman, lntelli- 
gent processing of MMC materials, Final Report to 
DARPA/NRL, Contract No. N00014-90-C-0060. GE 
Aircraft Engines, Lynn, MA (1992). 
W. Shyy, Computational Modeling for Fluid Flow and 
Interfacial Transport. Elsevier, Amsterdam, The Nether- 
lands (1994). 


